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Prince: an effective router mechanism for networks
with selfish flows

Lazaros Tsavlidis, Pavlos S. Efraimidis, and Remous-Aris Koutsiamanis

Abstract— Starting from the premise that modern routers are
not protected from aggressive and unresponsive flows, we define
a new, almost stateless, active queue management scheme, called
Prince. The basic idea is to protect the fair share of well-behaved
flows. We adopt a game theoretic view, where incentive is given to
the majority flow by dropping its packets at congestion. In order
to find the majority flow, we focus on the queue of the router and
detect the flow with the most packets in it. From a game-theoretic
point of view, Prince manages to track and bound aggressive flows
and favor socially responsible ones. Our results show that in this
context Prince resembles MaxMin Fairness allocation. Finally, we
also examine a streaming version of the algorithm that can be
fine-tuned to any desired performance/accuracy trade-off point.

Index Terms– Algorithmic Mechanism Design, Fair Resource
Allocation, Active Queue Management, Algorithmic Game The-
ory

I. INTRODUCTION

Network congestion is a major issue on the Internet. Under
congestion, networks struggle to allocate resources efficiently
and fairly. Congestion builds up easily when some of the flows
try to gain a large share of the network capacity, either by
excessively increasing their sending rate or by not cutting back
despite their packet losses. This situation, in which multiple
selfish players can ultimately overload a shared resource even
when it is obvious that it is not in anyone’s long term interest,
is an instance of the “Tragedy of the Commons” problem. This
behavior leads to heavy congestion and threatens the stability
and efficiency of the Internet.

Beyond these consequences, our greatest concern is the
unfairness that arises. During congestion, misbehaving flows
may retain their sending rate while well-behaved ones cut
back. The result is that the misbehaving flows receive an
unfair proportion of the bandwidth at the expense of the
well-behaved flows. In this paper, a game theoretic point of
view is adopted. In these terms, network flows are selfish and
independent players, the router’s queueing algorithm is the
game mechanism, the players’ bandwidth requests constitute
the set of possible strategies and the allocated bandwidth is
the players’ utility.

Achieving fairness and efficiency in the network can be
translated to achieving a desirable Nash Equilibrium (NE) in
the game theoretic model. In order to accomplish this goal
we turn to mechanism design. We opt not to try to control
the flows but to give them incentives to act responsibly [17],
[18]. We use the core elements of a network, the routers, to
warn or diminish selfish flows. In a previous work [6], we
analyzed the Prince algorithm in an abstract network-game
model and obtained interesting results. In this paper, we adapt
Prince to a realistic Internet-centric model. Our basic principle
is to ground the packet dropping decisions on the buffer
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contents. In particular, at every congestion, a packet from a
flow with the largest number of packets in the buffer, i.e. a
majority flow, is dropped. We present three versions of Prince:
Prince-G precisely implements the basic principle, Prince-S is
a more vindictive instance of the basic principle and Prince-A
approximates Prince-G with a data stream algorithm.

The novelty of this work is the application of game theoretic
incentives in a real network in order to accomplish fairness
among the players, while at the same time employing a
lightweight mechanism on the routers. The mechanism is
a new active queue management scheme which resembles
MaxMin fairness by protecting the fair share of well-behaved
flows. We do not achieve this by trying to implement a strict
instance of MaxMin by continuously controlling every flow.
Rather, and this is our innovation, we apply either moderate
(Prince-G) or strong (Prince-S) incentives to the aggressive
player who stresses the router most during congestion. This
will force any rational player to back off in order to avoid
further detriment to his utility. We study Prince and provide
theoretical arguments and extensive experimental results. For
the latter, we experimented with TCP, UDP and mixed TCP
and UDP flows of varying aggressiveness and we compared
Prince against other popular queueing policies such as Drop-
Tail, RED, CHOKe and MaxMin. Additionally, we propose a
low complexity approximation of Prince to allow for an almost
stateless router implementation.

II. RELATED WORK

Nagle [13] proposed a game-theoretic view of network
congestion and suggested a market solution according to which
the rules of the game should be set in such a way, so that the
optimal strategy for the individual user results in an optimal
situation for all users. Shenker [18] correlates the selfish
behavior of the users with the design of the switch service
disciplines and suggests a fair share scheme which guarantees
efficient and fair operating points. Other researchers also
tried to model the interaction between Internet users with
various game definitions [1], [6], [17], [18] and emphasized
the importance of mechanism design in this process.

Router queue algorithms can be classified according to
their computational requirements. On the one hand, there are
stateless algorithms, which are lightweight and simple. For
similar games to ours, it has been proven that DropTail or
RED routers lead to undesirable NE when modern TCP flows
(e.g. SACK) participate [1], [5]. The handicap of DropTail is
its indiscriminate packet dropping mechanism, which causes
unfairness. RED [7] notifies more flows about congestion than
DropTail by deploying a randomized dropping mechanism.
RED also constrains the queue length between two thresholds
in order to prevent overflow and high queueing delay. The
drawback is that RED imposes the same loss rate for all flows,
therefore a flow has no incentive to be socially responsible.

On the other hand, there are stateful queueing policies, like
Fair Queueing [3], which are too computationally demanding
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to be deployed at routers. Fair Queueing accomplishes the
desired result (fairness) but at the cost of a separate queue for
each flow and increased management complexity. In response,
a variety of buffer management schemes were proposed that
maintain a FIFO queue while trying to fairly allocate band-
width. For example, CSFQ [19] does not need to maintain
state on core routers but it has to on the edge routers. Its
disadvantage is that the architecture of the Internet has to
be modified to allow routers to exchange messages relaying
the flows’ rate estimations. Other queueing policies use the
history of packet drops (e.g. RED-PD [12]) or the history of
the incoming packets (e.g. AFD [15]) to detect the aggressive
flows. While these policies do not keep separate queues for
each flow, they still require complex computations and extra
buffering operations.

CHOKe [16] is based on the assumption that the queue
content during congestion constitutes a sufficient statistic
about the incoming traffic and provides useful information
about candidate flows for pruning. CHOKe penalizes flows
that overcome their fair share by deploying a probabilistic
algorithm. Every incoming packet is compared with an already
queued packet and if they match they are both dropped.
The performance of this algorithm is good when only one
misbehaving flow is traversing the router but degrades when
more than one flow is aggressive. Another approach was also
based on the same queue management guidelines and a game
theoretic model [8]. Despite that it also aims at the highest rate
flow, it requires delicate refinement of the in-between queue
thresholds. Additionally, its dropping policy does not shield
the fair share when the queue usage is above the predefined
high threshold.

Outline.

In Section III we describe the basic guidelines for the design
of the Prince queueing policy and present three variants. More-
over, some theoretical arguments, the detailed description and
the corresponding computational requirements of the Prince
algorithm are provided. In Section IV, we discuss the game-
theoretic idea that culminated in Prince, while in Section V
we describe the experimental methodology and the results.
Finally, in Section VI we survey both the theoretical claims
and the experimental results, as well as our future work in this
area.

III. THE PRINCE ALGORITHMS

As already stated, our goal was to design a game mechanism
for the network which provides incentives to the flows to
behave in a socially responsible manner. The design criteria
we used for the mechanism should:

• Lead the game towards a desirable NE
• Provide a stateless and simple implementation.
• Not depend on being deployed on the whole network.

Based upon our criteria, we propose the Prince mechanism,
which uses the router queue and focuses on the majority flow
in it, i.e., the flow with the most packets.

Our algorithms work on a FIFO router queue and drop pack-
ets only during congestion. We define three implementations
with different trade-offs:

• Prince-G (Gentle) drops a packet from the majority flow
whenever a packet drop is required.
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Fig. 1. The game model

• Prince-S (Severe) marks all the majority flow’s packets
and drops one of the marked packets whenever a packet
drop is required.

• Prince-A (Adaptive) emulates Prince-G with a data stream
algorithm adapted from [10].

A. Theoretical Arguments

We will introduce a simple but concise game definition
in order to specify the model under analysis. The game that
represents the interaction between the flows and the Internet
infrastructure (Figure 1) is the following:

• The n players of the game are the flows that compete for
the common resource (link capacity).

• The moves available to each player are:
– set the AIMD parameters (α,β) for TCP flows,
– set the constant sending rate for UDP flows.

• The mechanism of the game is the router’s packet drop-
ping protocol.

• The goal of each player is to maximize their utility
function (e.g. maximizing goodput).

• The solution concept of the game is the Nash Equilib-
rium.

A desirable NE for the above game is characterized by ef-
ficiency and fair bandwidth allocation. While fairness can
be defined in multiple ways, we consider the MaxMin Fair-
ness criterion [3] to be the most appropriate for our model.
According to MaxMin, a set of rates is fair if no rate
can be increased without simultaneously decreasing another,
smaller, rate. MaxMin Fairness results in an equal share of
the bottleneck link for each flow traversing it [11] unless a
flow requests less than its fair share. In this case, the frugal
flow receives the bandwidth it requested, and the remaining
capacity is distributed equally to the more greedy flows.

The Prince algorithm attempts to protect the fair share of
each player in the game. In essence, the Prince-G algorithm
resembles the MaxMin Fairness bandwidth allocation by min-
imizing the majority flow’s sending window and sharing the
released bandwidth with the rest of the players. Every time
a new packet arrives at the queue the Prince-G algorithm is
triggered. If the queue is full, then a decision has to be made on
which flow’s packet to drop. As the following lemma shows,
Prince and MaxMin both decide on a flow with the maximum
number of packets.

Lemma 1: The Prince-G policy implements MaxMin Fair-
ness for buffer sharing.

Proof: Assume a Prince-G router with queue size C and
a set of n flows. Assume that the queue is full and that a new
packet has just arrived at the router. Hence, a total number of
C + 1 packets are currently at the router. Let w1, w2, . . . , wn

be the number of packets that belong to flows 1, 2, . . . , n,
respectively. Without loss of generality we can assume that

w1 ≤ w2 ≤ · · · ≤ wn . (1)
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The Prince-G policy will drop a packet from the flow n
with the largest number of packets in the queue (ties are
solved randomly). This way Prince-G implements the MaxMin
criterion.

Lemma 2: In both of the Prince-G and Prince-S policies,
a flow that did not exceed its fair share in the queue buffer,
does not lose any packet. Furthermore, in Prince-G, a flow is
never forced to have a buffer share smaller than its fair share.

Proof: As in Lemma 1 assume a router with queue size
C and a set of n flows. A new packet has just arrived while the
queue is full. Let w1, w2, . . . , wn be the number of packets that
belong to flows 1, 2, . . . , n, respectively, and assume relation 1
holds.

By combining relation 1 with
n∑

i=1

wi = C + 1 , (2)

we can show by contradiction that the number of packets of
flow n is wn > C/n. Clearly, if wn ≤ C/n then

∑n
i=1 wi ≤

n · (C/n) = C < C + 1, a contradiction.
We conclude that in both Prince-G and Prince-S, a flow

that has not exceeded its fair share cannot experience packet
drops. Furthermore, since Prince-G identifies a flow with the
maximum number of packets each time a packet has to be
dropped, a flow is never pushed strictly below its fair share.

We consider the above lemmas to be evidence that our
algorithms and especially Prince-G lead the game to desirable
NE. Further evidence is provided by the experimental results
in Section V.

B. Algorithm Descriptions

We examine three algorithms that embody the basic prin-
ciple of Prince, i.e., dropping packets from the majority flow.
All three algorithms operate by dropping packets when the
router experiences congestion, that is, when the router queue
is full and another packet arrives for which there is no more
space. The algorithms are differentiated by the way they select
which packet to drop under such circumstances. We consider
a router queue with C packets and n unique flows.

Prince-G : The Prince-G algorithm scans the queue and
counts the packets of each flow whenever a packet needs to
be dropped. Then it drops the first1 packet in the buffer of the
most frequent flow, making space for the new packet to enter
the queue. If the new packet belongs to the most frequent flow
in the queue, then only this packet is dropped immediately.

Complexity : Building the list of frequencies per flow can
be achieved in O(C) amortized time, by using a single pass
over the queue and accumulating the counts in a hash-table-
based dictionary (key:flowid, value:packet count). This time
complexity can be improved to O(1) worst case with high
probability if one of the hashing algorithms of [4] or [2] is
used. The most frequent flow can be identified within the same
process. The required space is Θ(min{C, n}).

Prince-S : The Prince-S algorithm retains a list of marked
packets which are candidates for being dropped. To create the
list, we execute once what is essentially a two-pass Prince-G
algorithm resulting in all of the majority flow’s packets being
marked (one pass to find the majority flow as in Prince-G,
one pass to mark all the majority flow’s packets). If the queue

1to quickly alert the flow about congestion

experiences congestion and there are no marked packets in
the queue, the list is created on-demand and then the first
marked packet is selected immediately for dropping. On the
other hand, if the list already contains marked packets then the
marking process is not executed and the next marked packet
in the list is dropped.

Complexity : Building the list of frequencies per flow is
achieved in the same O(C) time as Prince-G. The marking
of the most frequent flow’s packets, wmax in number, can be
stored in a linked list in time O(C) and in space Θ(wmax).
Dropping a marked packet can be achieved in O(1) time.

Prince-A : Prince-A is the window-based adaptation of
the data stream algorithm of Karp et al. [10]. The data stream
technique identifies the top-k heavy hitters in order to approx-
imately spot the majority flow while being as lightweight as
possible at the same time. Prince-A uses only a limited number
of counters (k) which is significantly less than the queue
capacity. The purpose is to implement the Prince algorithm
with less computational resources.

When a new packet arrives, irrespective of congestion, the
original algorithm is executed and the flow who sent the packet
may or may not get a counter. More precisely, the router
examines if the flow that the incoming packet belongs has
already a counter. If it already has a counter then this counter
is incremented by one. If it doesn’t, first checks if there is
an empty counter to correlate it with the current flow or else
decrements all counters by one.

The adaptation consists of triggering when a packet is either
served or dropped. In these cases, if the packet’s flow had
a counter associated with it, its value is decremented by
one. This function allows fast adaptation to changing network
conditions.

Complexity : The more complex implementation for storing
the counts, also proposed in [10] is used, allowing for O(1)
worst case with high probability time complexity when a
packet arrives. Space complexity in this implementation is
Θ(1/θ + c), where c is the largest frequency and 1/θ is
the maximum number of counters used. Both have a small
upper bound: c, 1/θ ≤ min{C, n}. When a packet is served
or dropped, the time complexity is the same O(1) as when
one arrives.

Additionally, if one is willing to trade space complexity for
time complexity, it is possible to substitute the approximate
Prince-A algorithm with HL-HITTERS, a recently developed
exact O(1) worst case with high probability time and O(C)
space complexity algorithm for finding the heaviest-k hit-
ters [22].

C. Effects of the Packet Size Assumption

In this work, we have focused on scenarios with packets of
equal size and showed that Prince handles them very well.
Indeed, the case of packets with different packet sizes is
very important for network routers. In brief, the Prince-G and
Prince-S algorithms can be adapted to count the total size of
the packets of each flow and then drop one or more packets
from the majority (in bytes) flow. For Prince-A this approach
does not apply. However, we can still handle packets of various
sizes by exploiting the fact that the size of IP packets does not
vary more than a constant factor. Thus, for Prince-A we can
consider a minimum packet size (mps) and handle any larger
packet as being k minimum packets for some appropriate
integer k. The data structure of [22] mentioned earlier can
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continuously monitor the majority flow in a router queue with
a time complexity of O(1) worst case with high probability
per packet. This data structure can also be adapted to packets
of variable size with the same trick as above in Prince-A.

IV. DISCUSSION

The Prince mechanism embodies the following fundamental
game theoretic principle. At the moment of congestion, we
drop packets from the player who contributes the most to the
congestion. As a result, his utility diminishes if he continues
to be aggressive. This is a strong incentive for a selfish but
rational player to back off, when he wants to maximize his
utility function, even if packet loss has a minor cost for him.
At the same time, Prince ensures that well-behaved players
receive appropriate service. The power of this technique lies in
that we need only target the most aggressive player to motivate
all the players to behave well. Even though all players desire
the largest possible proportion of the link capacity, no one
will want to have the maximum share because of the penalty.
Since it is not possible for a player to find out the shares of
the other players, he will have to be careful not to request too
much bandwidth in order not to become the most aggressive
one. The result is that the players restrain themselves to avoid
the penalty, until no congestion is present.

We should note that both Prince-G and Prince-S are moti-
vated by the same principle, i.e. punishing the most aggressive
player, but they accomplish this using different means and
have slightly different results. Arguably, Prince-S is the most
“vengeful” of the two. It will invariably provide the strongest
incentive to moderate aggressiveness, at the expense of being
less sensitive to majority flow fluctuations due to the lag
between majority flow re-evaluations. It will also be more
computationally lightweight, on average, than Prince-G.

The Prince algorithms presented in this work implement
work-preserving queue disciplines that drop packets from the
router queue only in case of overflows and, even then, the
minimum possible number of packets is dropped. When there
is no overflow, every flow is granted the buffer capacity it
requests. During overflows, the Prince algorithms implement
(Prince-G) or approximate (Prince-S, Prince-A) MaxMin fair-
ness for queue buffer sharing. MaxMin fairness is considered,
in general, one of the most effective ways to handle resource
sharing for heterogeneous (and homogeneous) demands.

Under the above perspective, Prince is a queueing mecha-
nism that can either enforce socially responsible behavior on
a misbehaving player or cooperate with a player who has the
following desirable features:

• Adoption of end-to-end congestion control, that is, being
responsive to packet losses by throttling down upon
congestion and throttling up to discover the fair share.

• Self-optimization by taking into account the packet losses
in the utility function.

It should be noted that the buffer size plays an important
role in the Prince algorithm. On the one hand, using a large
buffer provides us with a good approximation of the players’
sending windows. The more packets the buffer contains at
congestion, the better our queue snapshot captures each flow’s
contribution. On the other hand, a large buffer creates more
queueing delay for all the flows traversing the router and extra
computational cost to the router’s overall job. However, in our
experiments we obtained fair bandwidth allocations even with
small buffer sizes.

V. EXPERIMENTS

A. Experimental setup

We carried out a large set of experiments on the established
ns2 network simulator [14]. As a first step, we verified that
Prince manages to shield the fair share of the well-behaved
flows by reducing the bandwidth of the aggressive players. We
also examined the efficiency of our algorithm by monitoring
its achieved goodput, loss rate and fairness. Finally, we used
the heuristic methodology of [1] to find symmetric NE for our
game and then evaluated its efficiency.

This methodology is executed in iterations. In the first
iteration, we set α1 = 1 for flows 1, . . . , n − 1 and search
for the best response of flow n. Let α1,best be the value α,
with which n achieves the best goodput. In the next iteration,
flows 1, . . . , n − 1 play with α2 = α1,best and we search for
the best αn in this profile. If at iteration k, αk,best = αk then
this value, denoted by αE , is the SNE of the game.

Furthermore, we defined the Normalized Fairness Index
(NFI) which is the Fairness Index normalized to the MaxMin
Fairness bandwidth allocation, in order to measure the distance
between the bandwidth allocation of Prince and MaxMin. The
NFI is given by:

f(x1, . . . , xn, y1, . . . , yn) =
(
∑n

i=1
xi

yi
)2

n
∑n

i=1 (xi

yi
)
2

where xi is the goodput of the i-th flow using the under
examination algorithm and yi is the goodput of the same flow
achieved with MaxMin (DRR implementation).

We selected a simple dumbbell topology with two set of
parameters. The first set (Topology 1) defines a topology with
a bottleneck connection of 10Mbps/10ms (Bandwidth/Delay)
and source/sink connections of 10Mbps/1ms. The queue size
of the congested router is set to the Bandwidth×Delay product
(BWxD), which is 25 packets. The second set (Topology 2)
uses a topology with bigger capacity; 100Mbps connections.
For this set, the queue size is 100 packets, which is signifi-
cantly less than BWxD packets (250), in order to examine the
effectiveness of Prince under limited information.

The number of the players in the game was 10 for the first
topology and in the range 10 . . . 100 for the second one. The
players were TCP, UDP or mixed TCP and UDP flows. The
TCP flows could define their strategy by selecting the value
for the additive increase parameter α from 1 (standard TCP
value) to 20. We have chosen the TCP SACK version for the
implementation of the loss recovery mechanism because it is
widespread and tolerant to packet losses. UDP flows can define
their strategy by selecting their constant sending rate from the
fair share value to the bottleneck’s bandwidth value.

We evaluated the performance of Prince and compared it
to MaxMin, DropTail, RED and CHOKe. For MaxMin and
RED we used the default implementations of ns2 while for
CHOKe (which was not available) we used the implementation
from [20]. Each experiment starts with a 10sec period for
stabilization and continues with 100sec for measurements. The
flows start randomly between 0 . . . 1 sec and use a constant
packet size of 1Kbyte. The minimum and maximum thresholds
for RED and CHOKe were set automatically, depending on
the link bandwidth and delay. The ideal MaxMin Fairness
policy was represented by DRR (Deficit Round Robin) [9]
with the number of queues equal to the number of players.
The number of counters for Prince-A was set according to the
queue size and number of flows of each experiment; in the
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following figure legends, the number of counters used appears
parenthesized.

B. Results

1) Synthesis of TCP flows : This synthesis was examined
with both topologies and various aggressive players. Using
Topology 1 we ran experiments with nine standard TCP play-
ers and an aggressive one that changes his additive increase
parameter α from 1 to 20 in a series of identical games. The
results showed that the aggressive player gains at most 15%
more than his fair share under Prince-G and Prince-A, and
at most 25% under Prince-S (Figure 2). Note the inability
of DropTail to restrict the aggressive flow. RED has similar
performance to DropTail and is omitted from the figure for
clarity.
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Fig. 2. Goodput of the aggressive TCP player

With MaxMin or CHOKe the aggressive player has goodput
below his fair share for all α values except α = 1, but the loss
rate for CHOKe is higher (over 10%) than Prince-G (max 5%)
and the total goodput is lower (1150 versus 1250 packets/sec).
Prince-G sets an upper bound to the goodput of each player
and a lower bound which is close to the fair share. Therefore
the Fairness Index of Prince-G is close to 1 regardless of the
aggressiveness of the player (Figure 3). DropTail has similar
performance to RED and is omitted from the figure for clarity.
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Fig. 3. Fairness Index

For Topology 2 with 99 standard TCP players and an
aggressive one, all variants of Prince manage to track and
restrict the selfish player (Figure 4), having similar loss rate
and goodput with MaxMin and CHOKe. A direct comparison
of Prince-G to MaxMin (Figure 5) showed that the difference
between the goodput of the standard and the aggressive player
is lower under Prince-G, achieving a better Fairness Index.

Furthermore, we performed additional experiments with
larger numbers of aggressive players and found that Prince-
G’s performance advantage increases. For the same topology
with 90 standard and 10 aggressive TCP players, Prince-A
achieves to moderate the aggressive players despite using
only 10 counters. Prince-G and Prince-S can easily detect
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Fig. 4. Goodput of the aggressive TCP player
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Fig. 5. Prince-G Vs. MaxMin

the aggressive flows. This is due to the fact that standard
players are more rarely the majority players when many greedy
players participate, so their fair share is guaranteed. Moreover,
the more aggressive a player is, the easier it is for Prince
to protect the standard players. On the contrary CHOKe fails
when many selfish flows participate and the deficiency of RED
and Droptail is also obvious on Figure 6.
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Fig. 6. Average Goodput of the aggressive TCP players

On Figure 7 a direct comparison of Prince-G and CHOKe is
depicted. Prince-G shields the fair share of the standard players
no matter how aggressive the players are. As the aggressive
players increase their parameter α the difference between them
and the standard players becomes more pronounced and thus
Prince-G can more easily safeguard the latter. CHOKe seizes
the selfish players only when they choose high values for
parameter α (α > 10).

Prince-A is highly effective when many selfish TCP flows
are traversing the same bottleneck. The convergence of the
goodput between the standard and the aggressive flow is
depicted on Figure 8. For α < 8, Prince-A allocates equally
the bandwidth between standard and aggressive flows, while
RED encourages players to behave greedily.

2) Synthesis of UDP flows : For Topology 1, we use
nine UDP players with sending rate equal to their fair share
(1Mbps) and one aggressive player that chooses his rate in
the range 1 . . . 10 Mbps for each game. It is evident that only
Prince-G and MaxMin can minimize the greedy player, while
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Fig. 8. Prince-A Vs. RED

DropTail and RED fail (Figure 9).
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Fig. 9. Goodput of the aggressive UDP player

Prince-S has identical performance to Prince-G and is
omitted. CHOKe does not effectively minimize the selfish
player, therefore standard players suffer losses. A UDP flow
sending at the fair share cannot be the majority player in the
buffer. Therefore, Prince-G shields its fair share and achieves
a Fairness Index equal to 1 (> 0.99), just like MaxMin
(Figure 10).

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

1 2 3 4 5 6 7 8 9 10

UDP Rate (Mbps)

F
ai

rn
es

s 
In

d
ex

Prince-G
Prince-A (8)
MaxMin
DropTail
CHOKe
RED

Fig. 10. Fairness Index

For Topology 2, we used 90 standard UDP players and 10
aggressive players that choose their rate in the range 1 . . . 100
Mbps for each game. The effectiveness of Prince-G is depicted
in Figure 11, where the fair share of the standard UDP players
is shielded even better than by MaxMin. For MaxMin, the

goodput of the standard players is less than the fair share
because the queue capacity is less than the BWxD product.
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Fig. 11. Goodput of the standard UDP player

3) Mixed synthesis of TCP and UDP flows : It is important
to examine the efficiency of our queueing mechanism with
diverse player sets. Therefore, in Topology 1, we use four
standard TCP players (α = 1) and four standard UDP players
(1Mbps) as well as one aggressive TCP player with α = 2
and one aggressive UDP player with a 10Mbps sending rate.
In Figure 12, we see that Prince resembles MaxMin Fairness
for the aggressive UDP player, unlike DropTail, RED and
CHOKe.
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Fig. 12. Goodput of the aggressive UDP player

Moreover, the aggressive TCP flow is also limited to the fair
share (Figure 13). With RED and CHOKe all the TCP players
are deprived of their fair share (equal to 125 packets/sec),
while with DropTail the aggressive TCP player obtains 30%
more than his fair share.

Prince-G
Prince-A (8)

Prince-S

CHOKe

RED

0

20

40

60

80

100

G
o

o
d

p
u

t 
(p

ac
ke

ts
/s

ec
)

Fig. 13. Goodput of the aggressive TCP player

The convergence of Prince-G to MaxMin is more clear by
using the Normalized Fairness Index, shown in Figure 14.
Moreover, Prince-G ensures a fair allocation of bandwidth to
all the players and as a consequence achieves a high Fairness
Index.

4) NE results : We used the aforementioned methodology
to heuristically find a symmetric NE of the game, with either
only TCP or only UDP flows. For the TCP game, a part
of the results can be deduced directly from Figure 2. If the
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mechanism of the game is Prince-G, Prince-A or MaxMin,
then the player has nothing to gain by increasing his additive
increase parameter α beyond the standard TCP value. For
Prince-S, CHOKe, RED and DropTail, the derived NE are less
desirable due to the high loss rate and the slightly reduced
goodput (Figure 15).

Queue Policy αΕ goodput 
packets/sec 

loss rate 
(%) 

Prince-G 1 124,9 5,62 

Prince-S 1 123,0 12,12 

Prince-A 1 124,9 5,65 

MaxMin  1 124,9 5,71 

DropTail 2 122,5 8,26 

RED 2 122,8 8,19 

CHOKe 2 121,7 9,26 
 

 

Fig. 15. Efficiency of NE with TCP players

For the UDP game, MaxMin, Prince-G and Prince-S lead to
efficient and fair NE because a player has equivalent perfor-
mance for almost every available sending rate (Figure 9). The
other queueing policies fail to control the aggressive players,
so the game results in an unfair and inefficient NE (Figure 16).

Queue Policy 
sending rate 
(Mbps) 

goodput 
packets/sec 

loss rate 
(%) 

Prince-G 1 125,0 0,0 

Prince-S 1 125,0 0,0 

Prince-A 5 125,0 79,51 

MaxMin  1 125,0 0,0 

DropTail 10 125,0 89,12 

RED 10 125,0 89,89 

CHOKe 10 125,0 89,99 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Efficiency of NE with UDP players

5) Comparison: The three variants of Prince express the
same game theoretic idea but do not always achieve equivalent
results. Prince-G adopts a moderate treatment to limit aggres-
sive flows, so it leads the game to a desirable NE. Prince-A can
achieve similar performance to Prince-G, despite its stateless
implementation, in certain problem classes. It allows us fine
grained control over the complexity/performance trade-off, by
selecting the desired number of counters. When the number
of counters reaches the upper limit, i.e., the maximum queue
size, then we obtain a streaming version of Prince-G. Prince-S
features lower computational complexity than Prince-G at the
expense of increased loss rate at the NE due to the aggressive
penalization of the majority flow.

We ran experiments to evaluate whether Prince-S is compu-
tationally less intensive than Prince-G. At the same time we

examined the severity of Prince-S, namely, how often Prince-
S drops a packet from the last majority flow even though the
majority flow has in the meantime changed to another flow.
The following Figures (17, 18 and 19) show how many packets
were dropped with Prince-S in relation to the aggressiveness of
the greedy flow(s). In particular, the third column shows how
many already marked packets were dropped and originated
from the current majority flow. The fourth column shows the
same, except that these packets were dropped from a flow that
is no longer the majority flow. Finally, the last column shows
how many times Prince-G ran on behalf of Prince-S, i.e. no
marked packets existed in the queue.

For the TCP synthesis on Topology 1 (Figure 2) we can
discern that althought Prince-S restricts the aggressive player
less than Prince-G, it also needs to compute the majority flow
60% less often than Prince-G. (Figure 17).

Dropped packets 
Increase 

parameter αn 
Loss 
rate 

Prince-S 
(hit on the 

majority flow) 

Prince-S 
(hit on a non 

majority flow) 

Prince-G 
(deployed by Prince-

S due to lack of 
marked packets) 

1 5,5% 1863  3008 3218 
2 5,9% 2132  3316 3308 
3 6,4% 2371 3504 3334 
4 6,7% 2479 3779 3374 
5 6,9% 2717 4012 3354 
6 7,2% 2834  4233 3289 
7 7,5% 3017 4309 3307 
8 7,7% 3163  4504 3305 
9 7,7% 3243 4467 3311 

10 8,0% 3373 4513 3266 
11 8,0% 3463  4599 3248 
12 8,1% 3759 4543 3217 
13 8,3% 3892 4683 3212 
14 8,2% 3778  4455 3209 
15 8,1% 3858  4559 3255 
16 8,2% 3920  4583 3205 
17 8,3% 3821  4438 3145 
18 8,2% 3867  4395 3195 
19 8,1% 3997  4384 3164 
20 8,1% 3874  4325 3152 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17. Prince-S with TCP synthesis

For the UDP synthesis, Prince-S has the same efficiency
as Prince-G on limiting the aggressive flow. The results
(Figure 18) for this corner case show that Prince-S periodically
deploys Prince-G (from 33% to 6% in inverse proportion to
the aggressiveness of the UDP flow) while the effect is the
same. The column which shows the hits on a non majority
flow is replaced by the Prince-G deployment percentage col-
umn, because a standard CBR flow cannot be marked as a
majority flow (never exceeds its fair share). Finally, in the

Dropped packets 

UDP rate 

(Mbps) 

Loss 

rate 
Prince-S 

(hit on the 

majority flow) 

Prince-G 

(deployed by 

Prince-S due to 

lack of 

marked 

packets) 

Prince-G deployment 

percentage 

1 0 % 0 0 0% 

2 9,1% 9075 4538 33,3% 

3 16,6% 20489 6830 25,0% 

4 23,0% 34110 6822 16,6% 

5 28,5% 47756 6828 12,5% 

6 33,3% 61436 6835 10,0% 

7 37,5% 73735 8201 10,0% 

8 41,1% 86318 9087 9,5% 

9 44,4% 102216 7205 6,6% 

10 47,4% 112771 10254 8,3% 

 

 

 

 Fig. 18. Prince-S with UDP synthesis

mixed synthesis the deployment of Prince-S succeeds in the
restriction of the aggressive TCP flow but fails to diminish the
fairly greedy UDP flow (Figure 12). However, its effectiveness
is quite qood considering that it executes Prince-G for only
10% of the dropped packets (Figure 19).
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Dropped packets 
Loss 
rate 

Prince-S 
(hit on the 

majority flow) 

Prince-S 
(hit on a non  

majority flow) 

Prince-G 
(deployed by Prince-S due 
to lack of marked packets) 

42,2% 78392 11927 7715 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 19. Prince-S with mixed synthesis

C. Multiple Flows

In the experiments we implicitly assumed that every net-
work flow is considered to be a selfish player that seeks to
optimize its utility function. One can consider all packets
originating from the same IP address or the same subnet
address to belong to the same selfish player. This would ensure
that a user/player that can launch multiple flows concurrently
(for any reason) will not be able to obtain an unfair part of the
network bandwidth in total. Moreover, the impact of multiple
flows per user on the fairness of the network is a general
issue discussed for example in [21]. In general, it should be
possible to apply any other successful approach to handle this
issue (beyond the simplistic grouping of flows) to the Prince
algorithms.

VI. CONCLUSION

Based on our theoretical and experimental results, the
following features of Prince emerge:

• It allocates bandwidth to each player close to his fair
share.

• It leads to efficient NE with high goodput and low loss
rates.

• It sustains its high performance even in the presence of
multiple aggressive TCP or unresponsive high-rate UDP
flows.

• It exhibits the positive side-effect of avoiding both the
synchronization and the starvation of flows.

The previous features make us confident that Prince, besides
being simple, is highly effective.

The basic game-theoretic idea of Prince, targeting and
restricting the majority flow, yielded interesting results. A
secondary outcome is that fair buffer sharing can result in
fair bandwidth sharing.

Our future endeavors include examining hybrid variants of
Prince in order to further optimize its computational per-
formance. Additionally, we need to examine the behavior
of Prince in complex network topologies and heterogeneous
router compositions. Finally, we are working on an optimized
version of Prince-G for packet streams.
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